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Simultaneous Diophantine Approximation with Excluded Primes

Léaszl6 Babai*

Abstract

Given real numbers ag,...,q,, a simultaneous dio-
phantine e-approximation is a sequence of integers
Pi,...,P,,Qsuchthat @ >0andforall j € {1,...,n},
|Qa;—P;| < e. A simultaneous diophantine approxima-
tion is said to exclude the prime p if @) is not divisible by
p. Given real numbers aq,...,a,, a prime p and € > 0
we show that at least one of the following holds:

(a) there is a simultaneous diophantine -
approximation which excludes p, or

(b) there exist ai1,...,an, € Z such that > aja; =
1/p+t, t€Zand Y |a;| < n/?/e.

Note that these two conditions are mutually nearly ex-
clusive in the sense that in case (b) the a; witness
that there is no simultaneous diophantine &/(n?/?p)-
approximation excluding p. The proof method is
Fourier analysis using results and techniques of Ba-
naszczyk [Ban93].

As an application we show that for p a prime and
bounded d|p — 1 the ring Z /p*Z contains a number all
of whose d-th roots (mod p*) are small.

We generalize the result to simultaneous diophan-
tine e-approximations excluding several primes and con-
sider the algorithmic problem of finding, in polynomial
time, a simultaneous diophantine e-approximation ex-
cluding a set of primes.

1 Introduction

Given real numbers ag,...,a,, a simultaneous dio-
phantine e-approximation is a sequence of integers
Pi,...,P,,Q such that @ > 0 and for all j € [n],
|Qa;j — Pj| < e. By Dirichlet’s theorem (see e.g.
[Lov86)), for any ai,...,a, and any € > 0 there is a si-
multaneous diophantine g-approximation Py, ..., P,, @,
where Q < e ™. Given ay,...,a, and an integer ¢ > 0
it is NP-hard to find the best simultaneous diophan-
tine approximation with @ < ¢ ([Lag85]). It is possi-
ble to find, in polynomial time, an approximation with
Q < gand e < 2"°¢1/" [LLL82, Lov86]. This found
numerous applications such as factoring of polynomials
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with rational coefficients [LLL82] and more generally
over algebraic number fields, breaking of knapsack-type
cryptosystems [Lag84],[Sha82] or in the disproof of the
Mertens conjecture via explicit computation [OT85]. In
this paper we will consider the following modification of
the simultaneous diophantine approximation problem.
Instead of giving an upper bound on @ we will require
that @ be not divisible by a given prime p. Potential
applications of this problem arose recently in extremal
combinatorics, coding theory and the study of the di-
ameter of Cayley graphs.

We say that a diophantine approximation excludes
the prime p if p f Q. Given a prime p, real num-
bers ai,...,a, and € > 0, is there a simultaneous dio-
phantine e-approximation excluding p? For example if
a3 = 1/p and € < 1/p then an e-approximation exclud-
ing p is clearly not possible. The following proposition
generalizes this observation.

ProrosITION 1.1. Let ay,...,a, € 7Z be such that
Y i—y ajaj =t/p where p t t. If

" 1
E :|aj|<_7
=1 P

then there is mno simultaneous
approzimation excluding p.

(1.1)

diophantine -

Proof: Suppose that we have Pi,..
that |Qa; — P;j| <e. Then

" n n n n 1
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j=1 =1 i=1 =1

This implies p | Q¢ and therefore p | Q. |

Proposition 1.1 says that certain linear relations
with small coefficients are obstacles to simultaneous
diophantine approximation excluding p. Our main
result is a converse of this statement.

., Pp,Q such

THEOREM 1.1. Let ay,...,0, be real numbers. Let p
be a prime. If there is no simultaneous diophantine e-
approzimation of ay, ..., o, ercluding p, then for any t
there exist integers ay, - ..,ay,,s such that

= t
Zaja]- =-+s
=1 b
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and

(1.2)

REMARK 1. Note that (1.2) implies that Y7, |a;| <
n3/?Je. Hence the gap between the necessary upper
bound (1.2) and the sufficient upper bound (1.1) for
the absence of e-approximation excluding p is a factor
of n%/2p (independent of ¢ and the a;).

Theorem 1.1 does not impose a bound on the
denominator. For algorithmic applications it is natural
to impose such a bound. This problem is addressed in
our next result.

THEOREM 1.2. Letay,...,a, be real numbers. Let p be
a prime and let ¢ > 0 be an integer. If there is no simul-
taneous diophantine e-approzimation Py, ..., P,,Q <q
ofai,...,an excluding p, then for any t there exist inte-
gers ai,...,an,s and a real number k of absolute value
|k| <n/q such that

- ¢
Zajaj =—+s+kK
=1 P

and

3

5 _ 1’
j=1
REMARK 2. The numbers ay,...,a, are witnesses
that there is no simultaneous diophantine &/(2n3/?p)-
approximation Pi,...,P,,Q of ai,...,a, with @ <

2p/|k|.

We use the notation [n] = {1,...,n}. Given
real numbers ay, ..., ay, f1,- .., By, a nonhomogeneous
diophantine g-approximation is a sequence of integers
P,...,P,,Q such that @ > 0 and for all j € [n],
|Qa; — P; — ;| < e. A nonhomogeneous diophantine
e-approximation need not exist.

THEOREM 1.3. (KRONECKER, SEE [CAs57, Lov86])
Let ay,...,an;B1,--.,08n € R. Then exactly one of the
following holds.

e For all ¢ > 0 there exist Py,...,P,,Q such that
Q@ >0 and for all j € [n], |Qa; — P; — Bj| <e.

o There exist integers ay, ..., ay, such that Z;;l a;o;
is an integer and 2?21 a;B; is not an integer.

This classical result is relevant to our problem
through the following reduction:

Let ¢ < 1/p. A nonhomogeneous diophantine e-
approximation of the numbers

(1.4)

gives a simultaneous diophantine e-approximation of
ai,...,a, excluding p. Hence the following is imme-
diate from Kronecker’s theorem.

COROLLARY 1.1. Let o, ...,a, be real numbers. Let p
be a prime. Then exactly one of the following holds

o For all ¢ > 0 there exists a simultaneous diophan-
tine e-approrimation of ay, ..., a, excluding p.

o There exist integers ay, . .
E;-lzl a0 = t/p.

-yQn,t such thatp t t and

[ ]
Theorem 1.1 is an effective version of this result.

We also consider the algorithmic problem of find-
ing, in polynomial time, a simultaneous diophantine e-
approximation of aj,...,a, excluding p. We assume
that ay,...,a, are rational numbers given by a numer-
ator and a denominator encoded in binary. The number
p, encoded in binary, is also part of the input.

THEOREM 1.4. Leta,...,a, be rational numbers. Let
p be a prime. Let € > 0 be the smallest real num-
ber such that there exists a simultaneous diophantine
e-approximation Py, ..., P,,Q of ai,...,a, excluding
p. Then we can find, in polynomial time, a simultane-
ous diophantine 2C,,41pe-approximation of a1,...,0,
excluding p, where C,, = 4/n2"/?.

Note that € is not part of the input in the “poly-
nomial time” statement above. In fact either € = 0 or
1/e < the largest denominator of ai,...,an,.

PROPOSITION 1.2. If aj = a;/b; € Q j € [n] then
there exists a smallest € for which an e-approximation of
ai,...,q, etists. Moreover, this smallest € is a fraction
with denominator b; for some j. In particular, either
e=0ore> 1L

ok
Proof: If P,...,P,,Q is an e-approximation then
¢ can be taken to be max;c[y) |Qa; — P;| and therefore
bje is an integer for some j € [n]. ]

Acknowledgements. We wish to thank Samuel Kutin
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tial combinatorial application to simultaneous diophan-
tine approximation with an excluded prime.



2 Proofs

We will use a technique due to Banaszczyk [Ban93)].
Given a measure p on R? its Fourier transform is the
function fi : R? = R given by

25 A= /R exp(2miy"x) dua).

For a countable subset A C R? consider the discrete
measure

p(A) = exp(—n||z||*)

z€EA

where ||z|| = \/2521 7 is the euclidean norm. Let L

be alattice in R?, i.e., L is the set of linear combinations
with integer coefficients of a basis in R%: L = 2?21 L.
Let o be the discrete measure given by

or(X) = p(XNL)/p(L).
Plugging the definition of oy, into (2.5) we obtain

—

1 .
Fi(y) = —= Y exp(—l|z|*) exp(2miy”z).
€L

p(L) 2
Note that o (y) is always real and |z (y)| < 1. Let
61.(x) = p(L +2)/p(L).
Let L* be the lattice dual to L, i.e.
L*={zcR?|(Vy € L)(z"y € 7)}.
Banaszczyk proved the following results.

LEMMA 2.1. ([BAN93]) The Fourier transform of the
measure o, associated with the lattice L is the function
¢+ associated with the dual lattice L*:

oL = ¢r~.
|

If follows, in particular, that for every lattice L and
forallz € R4, 0 < z(z) < 1and 0 < ¢p(z) < 1.
Indeed ¢r(x) > 0 by definition and oz (z) < 1 by the
observation above.

Let B be the unit ball in R?, i.e.,

B={zec®||lal <1}.

Banaszczyk has shown that most of the p-measure
of each translate of L is concentrated in a ball of
radius O(v/d) about the origin. The following lemma
formalizes this phenomenon.

LEMMA 2.2. ([BAN93]) For any ¢ > (27)~%/? and
u € Re,

p((L +u) \ eVdB) < 2 (C\/ﬁe_”cz)d

For d > 3 we let ¢ = /1 —1/d in Lemma 2.2 and
obtain the following bound.

COROLLARY 2.1. For any u € R?

p((L+u)\vd-1B)
p(L)

<1/4.

If there is no point in L* at distance < v/d — 1 from
u, then

1
p(L* +u) = p((L* +u) \ Vd —1B) < 1L
Hence o7 (u) = ¢+ (u) < 1/4. Thus large o7 (u) implies
the existence of w € L* close to u.

COROLLARY 2.2. Let u € RY. If or(u) > 1/4 then
there exists w € L* such that

lu—wl| < VAT,
||

Proof of Theorem 1.1: Letd =n+1. Let v be a
positive rational number to be chosen later. Let L C R?
be the lattice generated by the columns by, ..., bp41 of
the matrix B,

aq

B:ﬁ I
3 Qp
0O ... 0 v

The dual lattice L* C R? is generated by the columns

1,...,b5 4 of the matrix B~ (inverse-transpose),

0

€ :

BT - _°_ I :
Vn 0
- /v —apfv 1fv

Given w € L, let U(w) denote the coefficient of b,41
in the expression of w. We can tell the coefficient by
looking at the last coordinate of w, i.e.,

€
Uw) = mez—i—lwa



where e, 41 = (0,...,0,1).

If there exists w € L of euclidean norm ||w|| <
v/n such that U(w) # 0 (mod p), then we have an
diophantine e-approximation of aq,...,a, excluding p
(we use ||[w|lo < ||lw]|)- Thus by the assumption
of Theorem 1.1, all w € L with ||w|| < /n satisfy
U(w) =0 (mod p).

Let u = py%en-i-l- We have
(2.6)
7 = ﬁ 2 e(rliall) exp(miU(z)/p) 2
LS exp(—nlfel?) exp(2tnilU () /p)]| -
(L) zeLNy/nB
% Y. exp(=llzl[*) exp(2tmil(z)/p) -
p zEL\v/nB

Now all z € L of norm |[z|]| <
exp(2tmiU(z)/p) = 1. Hence

v/n satisfy

Filu) > ﬁ z esp(=rjal) -
1 2y _
reel zf exp(—lz||”) =
2
1—m Zf €xXp —71'||.’E|| )

AN
p(L)
Thus, using Corollary 2.1,

(2.7) FL(u) >1—2/4=1/2.

Hence from Corollary 2.2 it follows that there exists
w € L*, w = a1b] +...ayby, + cby,; such that w is at
distance < v/d — 1 = y/n from u. We have

(28)
ZaJ—Ez ‘ZaJaJ___CS?

Let v — 0. There are finitely many choices for the a;
and c, hence there exist integers a; and ¢ such that

n
n t
and ‘ ajo; — — — c‘ =0.
j:z]‘ p

and

|

Proof of Theorem 1.2: In the proof of Theorem

1.1 we choose v = €/q. We note that for w € L, if
|U(w)| > g then ||w|| > /n. The rest of the proof is the
same. |

3 Excluding several primes

We say that a diophantine approximation excludes a
set {p1,...,pr} of primes if it excludes all the p;. The
following observation is a generalization of Proposition
1.1. We use the notation [k] = {1,...,k}.

ProroSITION 3.1. Let ay,...,a, € 7Z be such that
t

Y ajey =30 L where for at least one £ € [K],
Y2

pe tte. If

n

1
3.9 a;| < ——
( ) Zl | ]| Ep1 - Pk I
Ji
then there is mno simultaneous diophantine -

approzimation excluding {p1,...,pr}

We can generalize Theorem 1.1 to approximations
excluding a set of primes.

THEOREM 3.1. If there is no simultaneous diophantine
e-approzimation excluding {p1,...,pr}, then there exist
integers ay, . ..,an,s and A C [k] such that

Zajaj Z ! + s
rea Pt
and

Za? < max{n? k*} /&>

=1

(3.10)

The proof of Theorem 3.1 is similar to the proof
of Theorem 1.1. Instead of (2.6) we consider following
sum:

Z exp(—||z||?) H (1 — exp(2miU(z)/py))-

zEL
We need to modify Corollary 2.1 as follows.
COROLLARY 3.1. For any u € R¢

p((L + w) \ mB) 1
p(L) k41"

where m = max{v/d — 1,Vk} and d > 3.

In the place of Corollary 2.2 we use the following
result.

COROLLARY 3.2. Letu € RY. If Gp(u) > 1/2FL then
there exists w in the dual lattice L* such that

[[u — w|| < max{vd—1,Vk}.



REMARK 3. Note that (3.10) implies that 37, |a;| <
n'/? max{n, k}/e. Hence the gap between the neces-
sary upper bound (3.10) and the sufficient upper bound
(3.9) for the absence of e-approximation excluding
{p1,...,pr} is a factor of n'/2max{n,k}p;---pr (in-
dependent of ¢ and the «;).

4 A polynomial-time algorithm

Suppose that there exists a simultaneous diophantine
g-approximation Pp,..., P,,Q of ai,...,a, excluding
p. Is there a way to efficiently find a simultaneous dio-
phantine f(n)e-approximation of aj, ..., a, excluding
p for some function f?

We answer this question in the positive. We will
use Babai’s modification [Bab86] of Lovész’s lattice
reduction algorithm [LLL82, Lov86]. In [Bab86] the
following result is proven for €; = --- = &,; the general
case follows from the same proof.

THEOREM 4.1. ([BAB86],THEOREM 7.1) Let
Q1yeeayQny B,y Pl > 0,...,6n > 0 be given
rational numbers. Let ¢ > 0 be the smallest in-
teger Q@ for which there exist Pi,...,P, such that
|Qa; — Pj — B;] <ej for all j € [n]; we let g =00 if no
such q exists. One can find in polynomial time either

(a) a certificate proving that ¢ = oo, or
(b) integers Py, ..
e |Qa; — P; — Bj| < Cpej for all j € [n], and
* Q| < Chng,
where Cp, = 4/n2"/?.

-, Pp, Q such that

Proof of Theorem 1.4: If none of the denomi-
nators of ay, ..., a, is divisible by p then ¢ = 0 and we
can easily find a 0-approximation of aq, ..., a, exclud-
ing p. If some denominator b; of ay,...,ay is divisible
by p then e > 1/b;.

Multiplying Pi,...,P,,Q by the multiplicative
inverse of @ in Z/pZ we obtain a simultane-
ous diophantine pe-approximation Pj,...,P. Q" of
a1,...,an with @ = 1 (mod p). Hence there ex-
ists a nonhomogeneous diophantine approximation of
01,...,0n,1/p;0,...,0,1/p with & = -+- = g, = pe
and €,,41 = €.

If 2C,11pe > 1, Theorem 1.4 holds vacuously.
Hence we assume 2C),41pe < 1. By Theorem 4.1 for
d > e we can find, in polynomial time, P/, ..., P}, ;,Q"
such that |Q"a; — Pj'| < Cp11p6 and |Q"/p— P, —
1/p| < Cp416. Hence if Cpy1pd < 1 we have Q" =1
(mod p). Therefore Q",P/',..., P! is a simultaneous

diophantine Cj,41pd-approximation of ai,...,q, ex-
cluding p. Since € is not part of the input, we try
§ =27k k =1,2,.... Since we have a lower bound
on ¢ we shall try at most polynomially many values of
J. [ |
We can generalize Theorem 1.4 to several primes.

THEOREM 4.2. Let ai,...,an,e be rational numbers.
Let p1,...,pr be primes. Let € > 0 be the smallest real
number such that there exists a simultaneous diophan-
tine e-approzimation Py, ..., P,, Q of ay, ..., a, exclud-
ing {p1,...,pr}- We can find, in polynomial time, a si-
multaneous diophantine 2C,4p1 - - - prE-approzimation
of ai,...,an excluding {p1,...,pr}, where C, =

4y/m2m2,

Proof (sketch): We multiply P, ..., P,, Q by the
multiplicative inverse of @ in the ring Z/(p1---prZ).
Then, similarly as in the proof of Theorem 1.4, we use
nonhomogeneous diophantine approximation for

Q.0 1/pry .o, 1/pE;0,...,0,1/p1, ..., 1/ py.
|

5 Application

5.1 Contracting a set of residue classes

The following type of question recently arose in a
number of contexts including coding theory [BSS03],
extremal combinatorics [Kut01] and the study of the
diameters of certain Cayley graphs (in progress).

Let (z mod m) denote an integer y with smallest
absolute value under the constraint y = z (mod m).
Question: Let A C Z/mZ. Does there exist an
integer @ such that ged(Q,m) = 1 and for all a € A,
|a@ (mod m)| is small?

This in effect is a simultaneous approximation prob-
lem with denominator relatively prime to m. Indeed,
for A = {ai1,...,a,}, our question asks the existence
of P,...,P, and @ such that ged(@Q,m) = 1 and
la;Q—mP;| < em. Equivalently, we need |a;Q—P;| < ¢
where a; = aj/m. Note that if such a @ exists then
w.l.o.g. 0 < @ < m. Theorem 1.1 states the essentially
exact obstacle to this.

5.2 Finding a small cyclotomic class

In a case of particular interest we can show that
the answer is always positive by proving that the
obstacle cannot exist. The case in point occurring in
several of the applications indicated is addressed by the
Theorem 5.1 below.

We use the following notation. Given a polynomial
P@) = ana™ + -+ ag we let [|plly = S lay| and
lpll = (Xj—ga3)'/?. As usual, & denotes the d-th



cyclotomic polynomial and ¢(d) = deg ®4 is Euler’s ¢

function.

THEOREM 5.1. Let m = p* be a prime power and let
d|p — 1. There exist integers t1,...,tq from distinct
residue classes mod p such that

o |tj| < Cypt=(h=D/e(d); gnd

td (mod pt),

e tli=...=

where
Cy = d”@d“(d—l)/sf’(d)_

In the case that d is a prime power we have

Cd d3/2
We devote the rest of this section to the proof of
Theorem 5.1.

5.3 A lower bound on the coefficients

Let w be a primitive d-th root of unity in Z/p*Z,
so A:={w®,...,w? 1} is the set of d-th roots of unity
in Z/p*Z. Then t; = w*~'t;, so we are looking for
@ := t; such that all the elements of QA are small
in absolute value mod p*. To eliminate the obstacle
stated in Theorem 1.1, we need to show that there is no
integer combination of w®/pk,..., w? 1 /pF with small
coefficients that is congruent to 1/p modulo 1. This
will follow from the following result.

LEMMA 5.2. Let w®, w1 be the d-th roots of unity
in Z/p*Z. Suppose that ay,...,aq € Z are such that
2?21 - s, where ged (s,p) = 1 and £ < k.
Then

ajwj’1 = pe
d p2t/e(d)
dai> ,

Jj=1

where
D, = ||q>d||2(d—1)/<p(d)'

For estimates of ||®4]|, see the end of this section.

Proof of Theorem 5.1 from Lemma 5.2: Let
a; = w? /p*. From Lemma 5.2 it follows that for any
ai,...,aq such that

Zaja]:—+t tez,

their fo-norm must be large;

et

pAk=1)/¢(d)

Hence, by Theorem 1.1, there exists a simultaneous
diophantine e-approximation Py, ..., Pj,Q of ay,...,aq
excluding p with

r
&7 P D/e@
Noting that Cy = dv/Dy, we have |Qu’ — P;p*| < ep* <
Cypk—(+=1/2(d) and hence we can take t; = Qui—P;p*.
If d is a prime power, d = rt, we know the exact
value of the £y-norm of @4, ||®4|| = \/F Hence

Cy < d(V/dM/t)r' =D/ (r=0r'"h < g3/2

5.4 Proof of the lower bound

In this section we prove Lemma 5.2. Let (Z/mZ)*
denote the group of units of the ring Z /mZ.

As before, let w be a primitive d-th root of unity in
Z/p*Z where d|p — 1.

PROPOSITION 5.1. ®4(w) = 0 (mod pF).

Proof: We have [ [, ; ®:(w) = w 4-1=0 (mod pF).
On the other hand, the order of w in Z/pZ is d (since
ged (d,p) = 1). Therefore for ¢t < d we have w® — 1 # 0
(mod p) and hence ®;(w) #Z 0 (mod p). |

Let Res(f, g) denote the resultant of the polynomi-
als f, g € Z[z]. Recall that

(i) Res(f,g) is an integer;
(ii) Res(f,g) =0 if and only in ged(f, g) # 1;

(iii) There exist w,v € Z[z] such that degu <
degg, degv < deg f and uf + vg = Res(f, 9);

(iv) [Res(f,9)| <[ f]|%87||g]|%8 .

Property (iv) follows by Hadamard’s inequality applied
to the Sylvester determinant form of the resultant.

In the next statement we do not assume that m is
a prime power.

PROPOSITION 5.2. Let m € Z. Let f(z),g9(z) € Z[z].
If there is a € Z such that f(a) = g(a) = 0 (mod m)
then Res(f,9) =0 (mod m).

Proof: Substituting = a into (iii) we obtain the
desired result. |

Proof of Lemma 5.2: Let f(z) = Ejzl ajzi=t.
We have f(w) = 0 (mod p*). By Proposition 5.1 we
have ®4(w) = 0 (mod p*). Hence by Proposition 5.2,
Res(f, ®4) =0 (mod p?). Clearly f is not a multiple of
®,4, because f(w) Z0 (mod p*). Since & is irreducible



over Q Res(f, ®4) # 0. Thus, by properties (i), (ii),
|Res(f, ®4)| > p’. On the other hand, by property (iv),

[Res(f, ®a)| < ||@al|*~"[]£]]#1.
Hence 4
26/ (@)
p 2
1@ P@ D7e@ = Zlaj'
=

|
REMARK: The following two results give the logarithmic
order of magnitude of ||®,|| for the worst values of n.

THEOREM 5.3. (BATEMAN,[BAT49]) For all n,
||<I)n|| < ||(I)n||1 < nd(n)/z < exp (n(1+0(1))1n2/1n1nn)

where d(n) is the number of positive divisors of n.

THEOREM 5.4. (ERDOS,[ERD49]) For infinitely many
n,
||¢n|| > exp (nc/lnlnn)

for some constant ¢ > 0.

6 Aproximating algebraic integers:
problem

an open

While our existence results (Theorems 1.1, 1.2, 3.1) con-
cern the simultaneous approximability of sequences of
real numbers a;, our algorithmic results (Theorem 1.4)
are limited to the case when the «; are rational. A re-
viewer challenged us to extend the results to the case
when the «; are algebraic. (An algebraic number is rep-
resented by its minimal polynomial and an interval in
which it lies).

A particularly interesting case arises when all the q;
are algebraic integers. In this case, our results guarantee
that e-approximations avoiding any finite set of primes
always exist (since, if an integral linear combination of
the a; is rational then it is an integer). So, unlike in
Theorem 1.4, there is no smallest € and € needs to be
made part of the input.

It is conceivable, however, that the «; have an
integral linear combination with small coefficients which
is doubly exponentially close to a non-integral rational
number, say 1/2; in any case, doubly exponential is the
best separation we are able to give. (The proof of the
separation is modeled after Liouville’s classical proof of
the transcendence of certain real numbers.)

If the doubly exponential separation (say, from 1/2)
is indeed nearly optimal then a 1/N-approximation
avoiding p = 2, where the bit-length of N is polynomi-
ally bounded in the description length of the «;, would
require () to have exponentially many digits. We don’t

know whether this case can actually occur but it might,
even in the special case when the o; are square roots of
integers.
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